优化理论 , 巴班斯基的教学最优化理论

社会2023/05/18网友67760

学习seo的作用

SEO的作用基本可以概述为:如何被引擎快速抓取并收录,然后有效的通过部分技术手段提高该网站关键字搜索引擎中的排名。基本就是如此

优化理论 , 巴班斯基的教学最优化理论

小学数学中的优化思想

优化思想就是在有限种或无限种可行方案(决策)中挑选最优的方案(决策)的思想,是一个很重要的数学思想。

教学过程最优化理论是谁提出来的

教学过程最优化理论是20世纪70年代初期由苏联教育家巴班斯基提出的教学理论.该理论运用现代系统论的原则和方法,对教学理论进行综合性的研究和探索.

优化方法的理论体系

(一)一维优化方法。主要有以下三类:1)基于盲人探路思想的试探法。以步长加倍策略将极值点确定在距离当前点单步步长之内,再以步长减半策略,使当前点接近于极值点。主要有确定极值点所在区间的进退法(应用推论1)、一维盲人探路法(在进退法基础上增加一个模块)、一阶导数符号法(应用推论2)等。2)区间削去法。比较区间内两点的目标函数值或计算一点的导数符号,根据单峰假设将极值点所在区间削短。主要有对称等比例、对称变比例区间分割法、平分法、切线交点法、自适应二分法等。3)拟合函数寻点法。主要是二次拟合函数法(抛物线法)、三角拟合函数法、二次拟合函数定点法、一次拟合导函数法等。

(二)多维无约束优化方法。主要有:1)负梯度方向法及基于盲人探路思想的折线负梯度方向法。2)多维二阶近似式方向法及其近似算法。3)坐标系拟均匀变换法,也称为坐标变换法,包括局部坐标系的建立。4)获得共轭方向的方法,主要有定义法、几何法、待定系数法、两次同方向寻优获得法、连续两次沿负梯度方向寻优获得法(四寻法、六寻法、三寻法)等。5)共轭方向轮换法,主要有几何法、待定系数法、正交向量组法等,包括方向组的概念。6)寻优方向的数值算法实现,基于二次函数假设的数值偏导数、方向导数计算式,构造二阶偏导数矩阵法、大步长探测等算法实例。7)拟合函数法,主要有多维二次拟合函数法和线性拟合梯度法。8)不求偏导数的方向组轮换法,主要有坐标方向轮换法、自适应坐标下降法、经典Powell基本算法和改进算法、构造共轭方向法等。9)无界多面体变形法,也称为单形替换法或单纯形法,与多维有约束复合形法的寻优思想相同。

(三)多维有约束优化方法。主要有:1)可行域内直接求解法,主要包括网格法、有界多面体变形法(复合形法)、随机方向法等。2)优选可用方向法,寻优到约束边界之后,寻优最好的方向继续寻优,是船到桥头自然直的正确思路。3)半步法,没有寻优到约束边界的时候采用无约束优化方法,寻到之后退半步重新选择新的寻优方向,是未雨抽聊的研究思路。4)化简法,主要有基于二阶近似式构造寻优方向法、基于一阶近似式线性化法。5)构造无约束优化问题序列法,采用加权组合的方式将目标函数和约束函数转化为无约束优化问题,权按照一定规律变化,从而构造出一系列的无约束优化方法,主要有围墙法(内点惩罚函数法,须加固围墙)和土堆法(外点惩罚函数法)。

(四)线性优化方法。对于目标函数和约束函数均为设计变量线性函数的优化问题,其约束边界和目标函数等值线均为直线,可行点的集合构成一个凸集,且为凸多面体。如果存在最优点,则必为该凸集的某个顶点。寻找最优点就是在该凸多面体上确定最优的顶点。主要方法为单纯形法,在可行域多面体的某一个顶点出发,逐渐滑向更好的顶点,最终获得最优点。

(五)多目标优化方法。主要有以下几类:1)穷举类方法。直接求出所有分目标函数的最优点,然后在各个目标之间进行协调,使其相互间作出适当“让步”,以便获得整体最优方案,选择较好的设计点。或者列出所有方案,采用专家评议、领导拍板等方式确定最优方案。2)直接重构单目标函数法。直接由各分目标函数构造一个新的目标函数,从而将多目标的优化问题转化为单目标的。如主要目标法、线性加权组合法、取最大分目标函数值法、分目标乘除法、分层序列法等,其中线性加权组合法最具有实用性。3)间接重构单目标函数法。将原分目标函数适当处理后构造一个新的目标函数。如理想点法、功率系数法(几何平均法)、协调曲线法等。

(六)离散变量优化方法。主要有三类:1)按连续变量处理法。取得最优点后,再圆整。离散变量依次确定,原优化问题依次降维。2)随机法。根据实际情况随机确定一些设计点,然后从中选取最优点。或者在初始点周围以随机方式寻找多个设计点,取其最优者作为当前点继续寻优。3)穷举法。如分支定界法、网格法。

(七)基于其他理论的优化方法。实际上,存在很多不能由标准数学模型描述的优化问题,其数学模型的建立与评价均没有固定的模式,可行域不连续,甚至只是一些零散的可行点,并且各可行点的优劣难以用统一的标准衡量,比如旅行商最佳路径问题、背包问题等。在日常生活当中也存在着类似的问题,如股市运作,何时何股入市最优;战争发起,何时何地以什么方式最有利;个人学习计划,先学习还是先工作,学什么课程做什么工作最好。借用其他学科的理论知识,可发展一些优化方法,如遗传算法、神经网络算法、基于知识的专家系统算法、蚁群算法、模拟退火算法、分形与混沌算法等。这些方法均以全域优化问题为研究对象,基于概率论和随机理论,使多个盲人按相同规律寻求全域极值点,因此也称为智能优化算法。其共同特点是“无序中寻求有序,偶然中探索必然”。

(八)常见的优化算例。1)一维单峰函数。用于一维优化方法的检验。2)二维二次函数。可绘图直观地表示寻优过程,,检验算法最直接有效。因为优化方法都是在单峰假设下提出来的,即假设目标函数为二次函数,检验结果可信。3)多维二次函数。构造共轭方向的优化方法对于二维优化问题效果明显,但是需要在多维设计空间当中检验。4)复杂函数。最典型的是Rosenbrock函数,由于存在一个弯弯的峡谷,成为许多优化方法的滑铁卢。5)目标函数没有数学表达式的优化问题。如目标函数的求取需要借助于其他计算算法。6)抽象优化问题。设计变量没有优选值问题、目标函数和约束函数难以用数学表达式表示。比如背包问题、旅行商问题、交通信号灯规划问题等。对于这些问题,穷举法是最可靠的算法。

(九)主要文献。上述综述主要是基于一下创新性文献而完成的:[1] 例证多维二阶近似式法的适用性[J]. 德州学院学报, 2017,33(6):12-14.[2] 多维二次拟合函数优化方法[J]. 甘肃科学学报, 2017, 29(5):26-28.[3] 基于目标函数梯度向量的相邻方向共轭法[J].甘肃科学学报,2017,29(05):15-21.[4] 目标函数优化的切线交点法[J]. 机械设计与研究(核心), 2017, 33(2):17-19,24.[5] The program verification of the three-seeking and six-seeking method based on the conjugate direction[A]. . 2017 5th International Conference on Machinery, Materials and Computing Technology(ICMMCT2017), March 25-26, 2017 Beijing, China. Advances in Engineering, volume 126, pp109-114.[6] 基于盲人探路寻优思想的二阶近似式定点法研究[J]. 中国石油大学学报(自然科学版), 2017, 41(1): 144-149.[7] 盲人探路负梯度方向法[J]. 甘肃科学学报, 2016, 28(5):116-122.[8] Blind-walking optimization method[J]. Journal of Networks, 2010, 5(12):1458-1466.[9] 优化方法[M]. 东南大学出版社, 2009.10[10] 随机方向法改进及其验证[J]. 计算机仿真, 2009, 26(1):189-192.[11] 具有畸形约束极值点问题的优化[J]. 中国科技论文在线学报, 2008, 3(8):562-565.[12] 形象化教学方法在“机械优化设计”课程中的应用[J]. 中国石油大学学报(社科版), 2008, 25(S): 90-92[13] 加固围墙的内点惩罚函数法防越界验证[J]. 机械设计, 2007, 24(S):111-112.[14]连续负梯度方向获得共轭方向的六寻优化方法[J]. 计算机科学与探索, 2019, 13(0).

如何理解巴班斯基的教学最优化理论

1 在教学任务上,最优化要做到明确教学和发展的目标,了解学生的准备状态,把教学任务具体化。

2 在教学内容上,最优化要做到分析教材中主要的和本质的东西,确保学生能掌握这些教学内容。

3 在教学方法上,最优化要选择能有效地掌握所学的内容,完成教学任务的模式,针对不同的学习者,进行有区别的教学。

4 在教学进度上, 最优化要做到确定适当的教学步调、速度,既完成教学任务又节省时间。

教学过程最优化理论包含哪些基本思想

教学过程最优化的概念和标准最优化指选择在给定条件下解决任何一种任务的最佳方案的过程。最优的教学过程,一般来说不是最好的教学过程,即并非理想的教学过程。最优是指在现有条件下,对学生和教师在当时的实际可能性来说,以及从一定的准则来看是最好的。巴班斯基认为,在现代条件下,最优地组织教学过程,“应该是使各个班级在每一个学生,在掌握教学内容方面,达到他当时实际可能达到的最高水平(优、良或合格),同时在可能的范围内,提高他的教育水平和发展水平。”具体而言,他认为,教学最优化包括以下几个方面:取得最大的可能效果;耗费最少的必要时间;耗费最少的必要精力;花费最少的经费。

相关文章